hamsta.core.HAMSTA.fit#
- HAMSTA.fit(S, intercept_design, N, Z=None, rotated_Z=None, U=None, M=None, constraints={}, residual_var=1.0, jackknife=False, num_blocks=10, complete=True, est_thres=False)#
Fit to compute likelihood and MLE
- Parameters
Z (
Optional
[ndarray
]) – signed test statistics of shape (M, )rotated_Z (
Optional
[ndarray
]) – test statistics after rotation of shape S.shapeU (
Optional
[ndarray
]) – the matrix U from SVD results of A = USV’S (
ndarray
) – the matrix S from SVD results of A = USV’constraints (
dict
) – constraints applied in the optimizationresidual_var (
float
) – variance of the residual in admixture mapping (default: 1)jackknife (
bool
) – If true, compute the jackknife standard errornum_blocks (
int
) – Number of jackknife blockscomplete (
bool
) – if False, only skip all tests and compute only estimatesest_thres (
Union
[bool
,float
]) – If float, estimate significant threshold at family-wise error rate equal the float value. If true, assume FWER=0.05. If false, skip significant threshold estimation.